
Designation: E 1876 – 01

Standard Test Method for
Dynamic Young’s Modulus, Shear Modulus, and Poisson’s
Ratio by Impulse Excitation of Vibration 1

This standard is issued under the fixed designation E 1876; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers determination of the dynamic
elastic properties of elastic materials at ambient temperatures.
Specimens of these materials possess specific mechanical
resonant frequencies that are determined by the elastic modu-
lus, mass, and geometry of the test specimen. The dynamic
elastic properties of a material can therefore be computed if the
geometry, mass, and mechanical resonant frequencies of a
suitable (rectangular or cylindrical geometry) test specimen of
that material can be measured. Dynamic Young’s modulus is
determined using the resonant frequency in either the flexural
or longitudinal mode of vibration. The dynamic shear modulus,
or modulus of rigidity, is found using torsional resonant
vibrations. Dynamic Young’s modulus and dynamic shear
modulus are used to compute Poisson’s ratio.

1.2 Although not specifically described herein, this test
method can also be performed at cryogenic and high tempera-
tures with suitable equipment modifications and appropriate
modifications to the calculations to compensate for thermal
expansion.

1.3 There are material specific ASTM standards that cover
the determination of resonance frequencies and elastic proper-
ties of specific materials by sonic resonance or by impulse
excitation of vibration. Test Methods C 215, C 623, C 747,
C 848, C 1198, and C 1259 may differ from this test method in
several areas (for example; sample size, dimensional toler-
ances, sample preparation). The testing of these materials shall
be done in compliance with these material specific standards.
Where possible, the procedures, sample specifications and
calculations are consistent with these test methods.

1.4 The values stated in SI units are to be regarded as the
standard.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
C 215 Test Method for Fundamental Transverse, Longitu-

dinal, and Torsional Frequencies of Concrete Specimens2

C 372 Test Method for Linear Thermal Expansion of Por-
celain Enamel and Glaze Frits and Fried Ceramic Whitew-
are Products by the Dilatometer Method3

C 623 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio for Glass and Glass-Ceramics by
Resonance3

C 747 Test Method for Moduli of Elasticity and Fundamen-
tal Frequencies of Carbon and Graphite Materials by Sonic
Resonance4

C 848 Test Method for Young’s Modulus, Shear Modulus,
and Poisson’s Ratio for Ceramic Whitewares by Reso-
nance3

C 1161 Test Method for Flexural Strength of Advanced
Ceramics at Ambient Temperature4

C 1198 Test Method for Dynamic Young’s Modulus, Shear
Modulus, and Poisson’s Ratio for Advanced Ceramics by
Sonic Resonance4

C 1259 Test Method for Young’s Modulus, Shear Modulus
and Poisson’s Ratio for Advanced Ceramics by Impulse
Excitation of Vibration4

E 6 Terminology Relating to Methods of Mechanical Test-
ing5

E 177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods6

1 This test method is under the jurisdiction of ASTM Committee E28 on
Mechanical Testing and is the direct responsibility of Subcommittee E28.03 on
Elastic Properties.
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3. Terminology

3.1 Definitions—The definitions of terms relating to me-
chanical testing appearing in Terminology E 6 should be
considered as applying to the terms used in this test method.

3.1.1 dynamic mechanical measurement, n—a technique in
which either the modulus or damping, or both, of a substance
under oscillatory applied force or displacement is measured as
a function of temperature, frequency, or time, or combination
thereof.

3.1.2 elastic limit [FL–2], n—the greatest stress that a
material is capable of sustaining without permanent strain
remaining upon complete release of the stress. E 6

3.1.3 elastic modulus[FL–2], n—the ratio of stress to strain
below the proportional limit. E 6

3.1.4 Poisson’s ratio(µ) [nd], n—the absolute value of the
ratio of transverse strain to the corresponding axial strain
resulting from uniformly distributed axial stress below the
proportional limit of the material.

3.1.4.1 Discussion—In isotropic materials, Young’s Modu-
lus ( E), shear modulus (G), and Poisson’s ratio (µ) are related
by the following equation:

µ 5 ~E/2G! – 1 (1)
E 6

3.1.5 proportional limit [FL–2], n—the greatest stress that a
material is capable of sustaining without deviation from
proportionality of stress to strain (Hooke’s law). E 6

3.1.6 shear modulus (G)[FL–2], n—the elastic modulus in
shear or torsion. Also called modulus of rigidity or torsional
modulus. E 6

3.1.7 Young’s modulus (E)[FL–2], n—the elastic modulus in
tension or compression. E 6

3.2 Definitions of Terms Specific to This Standard:
3.2.1 antinodes, n—two or more locations that have local

maximum displacements, called antinodes, in an unconstrained
slender rod or bar in resonance. For the fundamental flexure
resonance, the antinodes are located at the two ends and the
center of the specimen.

3.2.2 elastic, adj—the property of a material such that an
application of stress within the elastic limit of that material
making up the body being stressed will cause an instantaneous
and uniform deformation, which will be eliminated upon
removal of the stress, with the body returning instantly to its
original size and shape without energy loss. Most elastic
materials conform to this definition well enough to make this
resonance test valid.

3.2.3 flexural vibrations, n—the vibrations that occur when
the oscillations in a slender rod or bar are in a plane normal to
the length dimension.

3.2.4 homogeneous, adj—the condition of a specimen such
that the composition and density are uniform, so that any
smaller specimen taken from the original is representative of
the whole. Practically, as long as the geometrical dimensions of
the test specimen are large with respect to the size of individual
grains, crystals, components, pores, or microcracks, the body
can be considered homogeneous.

3.2.5 in-plane flexure, n—for rectangular parallelepiped
geometries, a flexure mode in which the direction of displace-
ment is in the major plane of the test specimen.

3.2.6 isotropic, adj—the condition of a specimen such that
the values of the elastic properties are the same in all directions
in the material. Materials are considered isotropic on a mac-
roscopic scale, if they are homogeneous and there is a random
distribution and orientation of phases, crystallites, components,
pores, or microcracks.

3.2.7 nodes, n—a slender rod or bar in resonance containing
one or more locations having a constant zero displacement. For
the fundamental flexural resonance of such a rod or bar, the
nodes are located at 0.224L from each end, whereL is the
length of the specimen.

3.2.8 out-of-plane flexure, n—for rectangular parallelepiped
geometries, a flexure mode in which the direction of displace-
ment is perpendicular to the major plane of the test specimen.

3.2.9 resonant frequency, n—naturally occurring frequen-
cies of a body driven into flexural, torsional, or longitudinal
vibration that are determined by the elastic modulus, mass, and
dimensions of the body. The lowest resonant frequency in a
given vibrational mode is the fundamental resonant frequency
of that mode.

3.2.10 slender rod or bar, n—in dynamic elastic property
testing, a specimen whose ratio of length to minimum cross-
sectional dimension is at least 5 and preferably in the range
from 20 to 25.

3.2.11 torsional vibrations, n—the vibrations that occur
when the oscillations in each cross-sectional plane of a slender
rod or bar are such that the plane twists around the length
dimension axis.

3.2.12 longitudinal vibrations, n—the vibrations that occur
when the oscillations in a slender rod or bar are parallel to the
length of the rod or bar.

4. Summary of Test Method

4.1 This test method measures the fundamental resonant
frequency of test specimens of suitable geometry by exciting
them mechanically by a singular elastic strike with an impulse
tool. A transducer (for example, contact accelerometer or
non-contacting microphone) senses the resulting mechanical
vibrations of the specimen and transforms them into electric
signals. Specimen supports, impulse locations, and signal
pick-up points are selected to induce and measure specific
modes of the transient vibrations. The signals are analyzed, and
the fundamental resonant frequency is isolated and measured
by the signal analyzer, which provides a numerical reading that
is (or is proportional to) either the frequency or the period of
the specimen vibration. The appropriate fundamental resonant
frequencies, dimensions, and mass of the specimen are used to
calculate dynamic Young’s modulus, dynamic shear modulus,
and Poisson’s ratio.
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5. Significance and Use

5.1 This test method may be used for material development,
characterization, design data generation, and quality control
purposes.

5.2 This test method is specifically appropriate for deter-
mining the modulus of materials that are elastic, homogeneous,
and isotropic(1).7

5.3 This test method addresses the room temperature deter-
mination of dynamic moduli of elasticity of slender bars
(rectangular cross section) and rods (cylindrical). Flat plates
and disks may also be measured similarly, but the required
equations for determining the moduli are not addressed herein.

5.4 This dynamic test method has several advantages and
differences from static loading techniques and from resonant
techniques requiring continuous excitation.

5.4.1 The test method is nondestructive in nature and can be
used for specimens prepared for other tests. The specimens are
subjected to minute strains; hence, the moduli are measured at
or near the origin of the stress-strain curve, with the minimum
possibility of fracture.

5.4.2 The impulse excitation test uses an impact tool and
simple supports for the test specimen. There is no requirement
for complex support systems that require elaborate setup or
alignment.

5.5 This technique can be used to measure resonant frequen-
cies alone for the purposes of quality control and acceptance of
test specimens of both regular and complex shapes. A range of
acceptable resonant frequencies is determined for a specimen
with a particular geometry and mass. The technique is particu-
larly suitable for testing specimens with complex geometries
(other than parallelepipeds, cylinders/rods, or disks) that would
not be suitable for testing by other procedures. Any specimen
with a frequency response falling outside the prescribed
frequency range is rejected. The actual modulus of each
specimen need not be determined as long as the limits of the
selected frequency range are known to include the resonant
frequency that the specimen must possess if its geometry and
mass are within specified tolerances.

5.6 If a thermal treatment or an environmental exposure
affects the elastic response of the test specimen, this test
method may be suitable for the determination of specific effects
of thermal history, environment exposure, and so forth. Speci-
men descriptions should include any specific thermal treat-
ments or environmental exposures that the specimens have
received.

6. Interferences

6.1 The relationships between resonant frequency and dy-
namic modulus presented herein are specifically applicable to
homogeneous, elastic, isotropic materials.

6.1.1 This method of determining the moduli is applicable
to composite and inhomogeneous materials only with careful
consideration of the effect of inhomogeneities and anisotropy.
The character (volume fraction, size, morphology, distribution,
orientation, elastic properties, and interfacial bonding) of the

reinforcement and inhomogeneities in the specimens will have
a direct effect on the elastic properties of the specimen as a
whole. These effects must be considered in interpreting the test
results for composites and inhomogeneous materials.

6.1.2 The procedure involves measuring transient elastic
vibrations. Materials with very high damping capacity may be
difficult to measure with this technique if the vibration damps
out before the frequency counter can measure the signal
(commonly within three to five cycles).

6.1.3 If specific surface treatments (coatings, machining,
grinding, etching, and so forth) change the elastic properties of
the near-surface material, there will be accentuated effects on
the properties measured by this flexural method, as compared
to static/bulk measurements by tensile or compression testing.

6.1.4 This test method is not satisfactory for specimens that
have major discontinuities, such as large cracks (internal or
surface) or voids.

6.2 This test method for determining moduli is limited to
specimens with regular geometries (rectangular parallelepiped,
cylinders, and disks) for which analytical equations are avail-
able to relate geometry, mass, and modulus to the resonant
vibration frequencies. This test method is not appropriate for
determining the elastic properties of materials that cannot be
fabricated into such geometries.

6.2.1 The analytical equations assume parallel and concen-
tric dimensions for the regular geometries of the specimen.
Deviations from the specified tolerances for the dimensions of
the specimens will change the resonant frequencies and intro-
duce error into the calculations.

6.2.2 Edge treatments such as chamfers or radii are not
considered in the analytical equations. Edge chamfers change
the resonant frequency of the test bars and introduce error into
the calculations of the dynamic modulus. It is recommended
that specimens for this test method not have chamfered or
rounded edges.

6.2.3 For specimens with as-fabricated and rough or uneven
surfaces, variations in dimension can have a significant effect
in the calculations. For example, in the calculation of dynamic
modulus, the modulus value is inversely proportional to the
cube of the thickness. Uniform specimen dimensions and
precise measurements are essential for accurate results.

6.3 This test method assumes that the specimen is vibrating
freely, with no significant restraint or impediment. Specimen
supports should be designed and located properly in accor-
dance with the instructions so the specimen can vibrate freely
in the desired mode. In using direct contact transducers, the
transducer should be positioned away from antinodes and with
minimal force to avoid interference with free vibration.

6.4 Proper location to the impulse point and transducer is
important in introducing and measuring the desired vibration
mode. The locations of the impulse point and transducer should
not be changed in multiple readings; changes in position may
develop and detect alternate vibration modes. In the same
manner, the force used in impacting should be consistent in
multiple readings.

6.5 If the frequency readings are not repeatable for a
specific set of impulse and transducer locations on a specimen,
it may be because several different modes of vibration are

7 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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being developed and detected in the test. The geometry of the
test bar and desired vibration mode should be evaluated and
used to identify the nodes and antinodes of the desired
vibrations. More consistent measurements may be obtained if
the impulse point and transducer locations are shifted to induce
and measure the single desired mode of vibration.

7. Apparatus

7.1 Apparatus suitable for accurately detecting, analyzing,
and measuring the fundamental resonant frequency or period of
a vibrating free-free beam is used. The test apparatus is shown
in Fig. 1. It consists of an impulser, a suitable pickup
transducer to convert the mechanical vibration into an electri-
cal signal, an electronic system (consisting of a signal
conditioner/amplifier, a signal analyzer, and a frequency read-
out device), and a support system. Commercial instrumentation
is available that measures the frequency or period of the
vibrating specimen.8

7.2 Impulser—The exciting impulse is imparted by lightly
striking the specimen with a suitable implement. This imple-
ment should have most of its mass concentrated at the point of
impact and have mass sufficient to induce a measurable
mechanical vibration, but not so large as to displace or damage
the specimen physically. In practice, the size and geometry of
the impulser depends on the size and weight of the specimen
and the force needed to produce vibration. For commonly
tested geometries (small bars, rods, and disks) an example of
such an impulser would be a steel sphere 0.5 cm in diameter
glued to the end of a flexible 10-cm long polymer rod. (See Fig.
2.) An alternate impulser would be a solid metal, ceramic, or
polymer sphere (0.1 to 1.0 cm in diameter) dropped on the
specimen through a guide tube to ensure proper impulse
position.

7.3 Signal Pickup— Signal detection can be by means of
transducers in direct contact with the specimen or by noncon-
tact transducers. Contact transducers are commonly acceler-
ometers using piezoelectric or strain gage methods to measure
the vibration. Non contact transducers are commonly acoustic
microphones, but they may also use laser, magnetic, or
capacitance methods to measure the vibration. The frequency
range of the transducer shall be sufficient to measure the
expected frequencies of the specimens of interest. A suitable

range would be from 100 Hz to 50 kHz for most advanced
ceramic test specimens. (Smaller and stiffer specimens vibrate
at higher frequencies.) The frequency response of the trans-
ducer across the frequency range of interest shall have a
bandwidth of at least 10 % of the maximum measured fre-
quency before –3 dB power loss occurs.

7.4 Electronic System—The electronic system consists of a
signal conditioner/amplifier, signal analyzer, and a frequency
readout device. The system should have accuracy and precision
sufficient to measure the frequencies of interest to an accuracy
of 0.1 %. The signal conditioner/amplifier should be suitable to
power the transducer and provide an appropriate amplified
signal to the signal analyzer. The signal analysis system
consists of a frequency counting device and a readout device.
Appropriate devices are frequency counter systems with stor-
age capability or digital storage oscilloscopes with a frequency
counter module. With the digital storage oscilloscope, a Fast
Fourier Transform signal analysis system may be useful for
analyzing more complex waveforms and identifying the fun-
damental resonant frequency.

7.5 Support System— The support shall serve to isolate the
specimen from extraneous vibration without restricting the
desired mode of specimen vibration. Appropriate materials
should be stable at the test temperatures. Support materials can
be either soft or rigid for ambient conditions. Examples of soft
materials would be a compliant elastomeric material, such as
polyurethane foam strips. Such foam strips would have simple
flat surfaces for the specimen to rest on. Rigid materials, such
as metal or ceramic, should have sharp knife edges or cylin-
drical surfaces on which the specimen should rest. The rigid
supports should be resting on isolation pads to prevent ambient
vibrations from being picked up by the transducer. Wire
suspension can also be used. Specimens shall be supported
along node lines appropriate for the desired vibration in the
locations described in Section 8.

8. Test Specimen

8.1 The specimens shall be prepared so that they are either
rectangular or circular in cross section. Either geometry can be
used to measure both dynamic Young’s modulus and dynamic
shear modulus. Although the equations for computing shear
modulus with a cylindrical specimen are both simpler and more

8 Suitable instrumentation is the Grindosonic instrument. The sole source of
supply of this instrument is J. W. Lemmens, 3466 Bridgeland Dr., St. Louis, MO
63044-2606. If you are aware of alternative suppliers, please provide this informa-
tion to ASTM Headquarters. Your comments will receive careful consideration at a
meeting of the responsible technical committee1, which you may attend.

FIG. 1 Block Diagram of Typical Test Apparatus

FIG. 2 Diagram of Typical Impulser for Small Specimens
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accurate than those used with a rectangular bar, experimental
difficulties in obtaining torsional resonant frequencies for a
cylindrical specimen usually preclude its use for determining
shear modulus.

8.2 Resonant frequencies for a given specimen are functions
of the specimen dimensions as well as its mass and moduli;
dimensions should therefore be selected with this relationship
in mind. The selection of size shall be made so that, for an
estimated modulus, the resonant frequencies measured will fall
within the range of frequency response of the transducers and
electronics used. For a slender rod, the ratio of length to
minimum cross-sectional dimension shall have a value of at
least 5. However, a ratio of approximately 20' 25 is preferred
for ease in calculation. For shear modulus measurements of
rectangular bars, a ratio of width to thickness of 5 or greater is
recommended for minimizing experimental difficulties.

8.3 All surfaces on the rectangular specimen shall be flat.
Opposite surfaces across the length, thickness, and width shall
be parallel to within 0.1 %. The cylindrical specimen shall be
round and constant in diameter to within 0.1 %.

8.4 Specimen mass shall be determined to within 0.1 %.
8.5 Specimen length shall be measured to within 0.1 %. The

thickness and width of the rectangular specimen shall be
measured to within 0.1 % at three locations and an average
determined. The diameter of the cylindrical specimen shall be
measured to within 0.1 % at three locations and an average
determined.

8.6 Table 1 illustrates how uncertainties in the measured
parameters influence the calculated modulus. It shows that
calculations are most sensitive to error in the measurement of
the thickness. Special care must be taken when measuring the
thickness of samples with a thickness of less than 3 mm.

9. Procedure

9.1 Activate all electrical equipment, and allow it to stabi-
lize according to the manufacturer’s recommendations.

9.2 Use a test specimen established as a verification/
calibration standard to verify the equipment response and
accuracy.

9.3 Fundamental Flexural Resonant Frequency (Out-of-
Plane Flexure):

9.3.1 Place the specimen on the supports located at the
fundamental nodal points (0.224 L from each end; see Fig. 3).

9.3.2 Determine the direction of maximum sensitivity for
the transducer. Orient the transducer so that it will detect the
desired vibration.

9.3.2.1 Direct Contact Transducers—Place the transducer
in contact with the test specimen to pick up the desired
vibration. If the transducer is placed at an antinode (location of

maximum displacement), it may mass load the specimen and
modify the natural vibration. The transducer should preferably
be placed only as far from the nodal points as necessary to
obtain a reading (see Fig. 3). This location will minimize the
damping effect from the contacting transducer. The transducer
contact force should be consistent, with good response and
minimal interference with the free vibration of the specimen.

9.3.2.2 Non Contact Transducers—Place the non-contact
transducer over an antinode point and close enough to the test
specimen to pick up the desired vibration, but not so close as
to interfere with the free vibration (see Fig. 3).

9.3.3 Strike the specimen lightly and elastically, either at the
center of the specimen or at the opposite end of the specimen
from the detecting transducer (see Fig. 3).

9.3.4 Record the resultant reading, and repeat the test until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental resonant frequency in flexure.

9.4 Fundamental Flexural Resonant Frequency (In-Plane
Flexure):

9.4.1 This procedure is the same as 9.3, except that the
direction of vibration is in the major plane of the specimen.
This measurement can be performed in two ways. In one case,
move the transducer and impulser 90° around the long axis of
the test specimen to introduce and detect vibrations in the
major plane (see Fig. 3). In the alternate method, rotate the test
bar 90° around its long axis and reposition it on the specimen
supports. Transpose the width and thickness dimensions in the
calculations. For homogeneous, isotropic materials, the calcu-
lated moduli should be the same as the moduli calculated from
the out-of-plane frequency. The comparison of in-plane and
out-of-plane frequency measurements can thus be used as a
cross check of experimental methods and calculations.

9.5 Fundamental Torsional Resonant Frequency:
9.5.1 Support the specimen at the midpoint of its length and

width (the torsional nodal planes) (see Fig. 4).
9.5.2 Locate the transducer at one quadrant of the specimen,

preferably at approximately 0.224 L from one end and toward
the edge. This location is a nodal point of flexural vibration and
will minimize the possibility of detecting a spurious flexural
mode (see Fig. 4).

9.5.3 Strike the specimen on the quadrant diagonally oppo-
site the transducer, again at 0.224 L from the end and near the
edge. Striking at a flexural nodal point will minimize the
possibility of exciting a flexural mode of vibration (see Fig. 4).

9.5.4 Record the resultant reading, and repeat the test until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental resonant frequency in torsion.

9.6 Fundamental Longitudinal Resonant Frequency:
9.6.1 Support the specimen at the midpoint of its length and

width (the same as for torsion), or brace the specimen at its mid
length, the fundamental longitudinal nodal position.

9.6.2 Locate the detecting transducer at the center of one of
the end faces of the specimen.

9.6.3 Strike the end face of the specimen opposite to the
face where the transducer is located.

TABLE 1 Effects of Variable Error on Modulus Calculation

Variable
Measurement

Error
Variable Exponent in

Modulus Equation
Calculation

Error

Frequency (f) 0.1 % f2 0.2 %
Length (L) 0.1 % L3 0.3 %
Mass (m) 0.1 % m 0.1 %
Width (b) 0.1 % b–1 0.1 %
Thickness (t) 0.1 % t–3 0.3 %
Diameter (D) 0.1 % D–4 0.4 %
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9.6.4 Record the resultant reading, and repeat the test, until
five consecutive readings are obtained that lie within 1 % of
each other. Use the average of these five readings to determine
the fundamental longitudinal resonant frequency.

10. Calculation

10.1 Dynamic Young’s Modulus(2, 3):
10.1.1 For the fundamental flexure frequency of a rectan-

gular bar(2),

E 5 0.9465~mff
2/b!~L3/t3!T 1 (2)

where:
E = Young’s modulus, Pa,
m = mass of the bar, g (see Note 1),
b = width of the bar, mm (see Note 1),
L = length of the bar, mm (see Note 1),
t = thickness of the bar, mm (see Note 1),
f f = fundamental resonant frequency of bar in flexure, Hz,

and
T1 = correction factor for fundamental flexural mode to

account for finite thickness of bar, Poisson’s ratio, and
so forth.

FIG. 3 Rectangular Specimens Tested for In-Plane and Out-of-Plane Flexure
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T1 5 1 1 6.585~1 1 0.0752µ 1 0.8109µ2! ~t/L!2 – 0.868~t/L!4

–F 8.340~1 1 0.2023µ 1 2.173µ2! ~t/L!4

1.0001 6.338~1 1 0.1408µ 1 1.536µ2! ~t/L! 2G (3)

where:
µ = Poisson’s ratio.

NOTE 1—In the modulus equations, the mass and length terms are given
in units of grams and millimetres. However, the defined equations can also
be used with mass and length terms in units of kilograms and metres with
no changes in terms or exponents.

10.1.1.1 IfL/t $ 20, T1 can be simplified to the following:

T1 5 @1.0001 6.585~t/L!2# (4)

andE can be calculated directly.

10.1.1.2 IfL/t < 20 and Poisson’s ratio is known, thenT1 can
be calculated directly from Eq 3 and then used to calculateE.

10.1.1.3 IfL/t < 20 and Poisson’s ratio is not known, then an
initial Poisson’s ratio must be assumed to begin the computa-
tions. An iterative process is then used to determine a value of
Poisson’s ratio, based on experimental Young’s modulus and
shear modulus. The iterative process is flowcharted in Fig. 5
and described in (1) through (5),

(1) Determine the fundamental flexural and torsional reso-
nant frequency of the rectangular test specimen, as described in
Section 9. Using Eq 12 and Eq 13, calculate the dynamic shear
modulus of the test specimen for the fundamental torsional
resonant frequency.

FIG. 4 Rectangular Specimen Tested for Torsional Vibration

FIG. 5 Process Flow Chart for Iterative Determination of Poisson’s Ratio
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(2) Using Eq 2 and Eq 3, calculate the dynamic Young’s
modulus of the rectangular test specimen from the fundamental
flexural resonant frequency, dimensions and mass of the
specimen, and initial/iterative Poisson’s ratio. Care must be
exercised in using consistent units for all of the parameters
throughout the computations.

(3) Substitute the dynamic shear modulus and Young’s
modulus values calculated in steps (1) and (2) into Eq 16 for
Poisson’s ratio satisfying isotropic conditions. Calculate a new
value for Poisson’s ratio for another iteration beginning at Step
(2).

(4) Repeat Steps (2) and (3) until no significant difference
(2 % or less) is observed between the last iterative value and
the final computed value of the Poisson’s ratio.

(5) Self-consistent values for the moduli are thus obtained.
10.1.2 For the fundamental flexural frequency of a rod of

circular cross section(2):

E 5 1.6067~L3/D4!~mff
2!T18 (5)

where:
D = diameter of rod, mm (see Note 1), and
T18 = correction factor for fundamental flexural mode to

account for finite diameter of rod, Poisson’s ratio,
and so forth.

T18 = 1 1 4.939~1 1 0.0752µ 1 0.8109µ2! ~D/L!2

– 0.4883~D/L!4

–F 4.691~1 1 0.2023µ 1 2.173µ2! ~D/L!4

1.0001 4.754~1 1 0.1408µ 1 1.536µ2! ~D/L! 2G (6)

10.1.2.1 If L/D $ 20, thenT18 can be simplified to the
following:

T18 5 @1.0001 4.939~D/L!2# (7)

10.1.2.2 IfL/D < 20 and Poisson’s ratio is known, thenT18

can be calculated directly from Eq and then used to calculateE.
10.1.2.3 IfL/D < 20 and Poisson’s ratio is not known, then

an initial Poisson’s ratio must be assumed to start the compu-
tations. Final values for Poisson’s ratio, dynamic Young’s
modulus, and dynamic shear modulus are determined, using
the same method shown in Fig. 5 and described in (1) through
(5) in 10.1.1.3, but using the modulus equations for circular
bars (Eq 5, Eq , and Eq 15).

10.1.3 For the fundamental longitudinal frequency of a
slender bar with circular, square or rectangular cross-section

E 5 16m f1
2 @L/ ~p D2K! # (8)

r = density of the material, g/mm3

f1 = fundamental longitudinal frequency of bar, Hz
K = correction factor for the fundamental longitudinal

mode to account for the finite diameter-to-length ratio
and Poisson’s Ratio:

K 5 1 2 @~p2 µ2 De
2! / ~8 L2!# (9)

µ = Poisson’s ratio
De = the effective diameter of the bar

For a circular cross section bar:

De
2 = the second power of the diameter (mm) of the bar

For a square cross-section bar:

De
2 5 4 b2/3 (10)

where:
b = the width/thickness of the square cross section, mm

For a rectangular cross section bar:

D2 5 2 ~b2 1 t2!/3 (11)

where:
b = the width of the rectangular cross-section, mm
t = the thickness of the rectangular cross-section, mm

10.2 Dynamic Shear Modulus(4):
10.2.1 For the fundamental torsional frequency of a rectan-

gular bar(4):

G 5
4 Lmft

2

bt @B/~1 1 A!# (12)

where:
G = dynamic shear modulus, Pa,
ft = fundamental resonant frequency of bar in torsion Hz.

B 5 F b/t 1 t/b

4 ~t/b! – 2.52~t/b!2 1 0.21~t/b! 6G (13)

and
A = an empirical correction factor dependent on the width-

to-thickness ratio of the test specimen(5). This correc-
tion factor has an effect of less than 2 % and can be
omitted, unless accuracies of better than 2 % are
desired. (See Fig. 6 for a plot ofA as a function of the
width-to-thickness ratio.) An empirical equation fitted
to the points from Fig. 6 is given in Eq 14.

A 5
@0.5062 – 0.8776~b/t! 1 0.3504~b/t!2 – 0.0078~b/t!3#

@12.03~b/t! 1 9.892~b/t!2#
(14)

10.2.2 For the fundamental torsion frequency of a cylindri-
cal rod (3):

G 5 16mf t
2~L/pD2! (15)

FIG. 6 Plot of the Shear Modulus Correction Term A
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10.3 Poisson’s Ratio:

µ 5 ~E/2G! – 1 (16)

where:
µ = Poisson’s ratio,
E = Young’s modulus, and
G = shear modulus.

If Poisson’s ratio is not known or assumed, then the iterative
process (described in Section 10.1.1.3) must be used to
determine an experimental Poisson’s ratio, using the appropri-
ate equations for Young’s modulus and shear modulus and the
experimental geometry (round, square, or rectangular cross
section) (Fig. 7).

10.4 If measurements are made at elevated or cryogenic
temperatures, the calculated moduli must be corrected for
thermal expansion effects using Eq 17.

MT 5 Mo@fT/fo#
2@1/~1 1 aDT!# (17)

where:
MT = modulus at temperatureT (either Young’s modulusE

or shear modulusG),
Mo = modulus at room temperature (either Young’s modu-

lus E or shear modulusG),
fT = resonant frequency in furnace or cryogenic chamber

at temperatureT,
fo = resonant frequency at room temperature in furnace or

cryogenic chamber,
a = average linear thermal expansion (mm/mm·°C) from

room temperature to test temperature (Test Method
C 372 is recommended), and

DT = temperature differential in °C between test tempera-
ture T and room temperature.

10.5 Use the following stress conversion factor for English
units.

1 Pa5 1.4503 10–4 psi (18)

11. Report

11.1 Report the following information:
11.1.1 Identification of specific tests performed, a detailed

description of apparatus used (impulser, transducer, electrical
system, and support system), and an explanation of any
deviations from the described test method.

11.1.2 Complete description of material(s) tested stating
composition, number of specimens, specimen geometry and
mass, specimen history, and any treatments to which the

specimens have been subjected. Include comments on dimen-
sional variability, surface finish, edge conditions, observed
changes after cryogenic or high-temperature testing, and so
forth, where pertinent.

11.1.3 Specimen temperature at measurement, number of
measurements taken, numerical values obtained for measured
fundamental resonant frequencies, and the calculated values
for dynamic Young’s modulus, dynamic shear modulus, Pois-
son’s ratio for each specimen tested.

11.1.4 Date of test and name of the person performing the
test.

11.1.5 Laboratory notebook number and page on which test
data are recorded or the computer data file name, or both, if
used.

12. Precision and Bias

12.1 An evaluation(6) was conducted and published in
1990, by Smith, Wyrick, and Poole, of three different methods
of modulus measurement of mechanically alloyed materials.
As part of that evaluation, the impulse modulus measurement
method,7 using a commercial instrument, was used. With that
instrument, the precision of the impulse method was measured
using a NIST Standard Reference Material 718 (alumina
reference bar No. C1) in flexural vibration. The NIST standard
had a measured and specified fundamental flexural frequency
of 2043.3 Hz. The fundamental flexural resonant frequency of
the NIST reference bar was measured by the impulse method
and reported by Smith, Wyrick, and Poole as 2044.6 Hz. This
was a percentage error of +0.06 %, indicating the level of bias
that is achievable with the impulse method.

12.2 An intralaboratory round-robin test was conducted in
1993 to measure the precision of frequency measurement on
two monolithic ceramic test bars. A bias test was not conducted
because suitable standard reference bars were not readily
available.

12.2.1 The tests were conducted with an alumina test bar
(10 g, 83.0 by 6.9 by 4.8 mm) and a silicon nitride bar (2.0 g,
50 by 4.0 by 3.0 mm). The silicon nitride bar was machined to
Test Method C 1161 tolerances; the alumina bar was not
machined and varied from 4.5 to 4.8 mm in thickness along its
length. The variations in the alumina bar thickness were
deliberate; it provided a test of the robustness of the frequency
measurement technique.

FIG. 7 Rectangular Specimen Tested for Longitudinal Vibration
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12.2.2 Torsional frequency measurements were not per-
formed because the width-thickness ratio of the bars was not
suitable for torsional frequency measurements.

12.2.3 The bars were tested in flexural vibration at eight
laboratories using ten combinations of different frequency
analyzer test systems, impulsers, contact and non contact
transducers, and supports systems. For the alumina bar, the
mean measured flexural frequency for the ten tests was 6581
Hz, with a standard deviation of 20 Hz. This corresponds to a
coefficient of variation of 0.3 %. For the silicon nitride bar, the
mean measured flexural frequency for the ten tests was 11 598
Hz, with a standard deviation of 34 Hz. This corresponds to a
coefficient of variation of 0.3 %.

12.2.4 The intralaboratory study did show that individuals
with experience in using the impulse test method for a given
specimen geometry produced data sets with smaller standard
deviations. For example, with the alumina test bar, the coeffi-
cients of variation for individual laboratories ranged from
0.001 to 0.6 % among the ten test sets. For the silicon nitride
bar, the range of coefficients of variation was 0.001 to 1.0 % for
the individual laboratories.

12.2.5 Based on this intralaboratory study of the impulse
test method, the repeatability and reproducibility coefficients at
the 95 % confidence level are listed in Table 2.

12.3 A propagation of errors analysis of the equations forE
and G using the stated tolerances for dimensions, mass, and

frequency measurements in this test method has shown that a
0.1 % error in the measurement of the key variables produces
a range of errors in the calculation of the modulus based on the
variable exponent in the equations. Table 1 gives the calcula-
tion error effects of errors in the different experimental vari-
ables.

12.4 It is expected that the major sources of experimental
variation in modulus values for this test method will be in two
measurements—the fundamental frequency and the smallest
dimension (thickness/diameter) of the test bars. If a fundamen-
tal resonant frequency of 6000 Hz is measurable to an accuracy
of 18 Hz/(0.3 %) and a 3-mm thick bar is parallel and measured
to an accuracy of 0.01 mm (0.3 %), the error in the thickness
measurement will have the greater effect on the modulus
calculation (0.9 % for thickness error versus 0.6 % for fre-
quency error).

13. Keywords
13.1 dynamic; elastic modulus; elastic properties; impulse;

Poisson’s ratio; shear modulus; Young’s modulus

ANNEX

A1. (DISC-SHAPED SPECIMENS) FOR DYNAMIC YOUNG’S MODULUS, SHEAR MODULUS, AND POISSON’S RATIO BY
IMPULSE EXCITATION OF VIBRATION

A1.1 Scope

A1.1.1 This annex covers the evaluation of disc geometry
specimens for the determination of the dynamic elastic prop-
erties of elastic materials at ambient temperatures. With a
disc-shaped specimen, the Poisson’s ratio is determined using
the resonant frequencies of the first two natural vibration
modes. The dynamic Young’s modulus and dynamic shear
modulus are then calculated using the Poisson’s ratio, the
experimentally-determined fundamental resonant frequencies,
and the specimen dimensions and mass.

A1.1.2 In testing disc specimens for Young’s modulus,
shear modulus, and Poisson’s ratio, the disc geometry requires
a significantly different set of equations and method of calcu-
lation and some minor changes in procedures. This annex
describes those variations as they relate to terminology, test
specimens, procedures and calculations for the disc geometry
specimens. However, the general methods, references, termi-
nology, significance, interferences, apparatus, specimen re-
quirements, and procedures described in the main body of the
test method are still pertinent to the test procedure and the
results.

A1.1.3 The use of the disc geometry is suitable for mono-
lithic and particulate/whisker/fiber reinforced materials. How-
ever, the disc geometry is not recommended for continuous

fiber reinforced composite materials because of the anisotropy
in mechanical properties and the difficulty in determining
orientation effects on the measured frequencies.

A1.2 Terminology

A1.2.1 Description of Terms Specific to this Annex for
Disc-Shaped Specimens

A1.2.1.1 anti-nodes, n—two or more locations that have
local maximum displacements in an unconstrained resonant
specimen.

A1.2.1.2 first natural vibration, n—the vibrations that occur
when the displacements in the cross-sectional plane (the plane
that is parallel to the flat of the disc) are normal to the plane and
symmetrical around two orthogonal diameters in the plane of
the disc, producing a twisting of the disc. This is an orthogonal
anti-flexural mode of vibration(7). For the first natural
vibration mode, the nodes are located along two orthogonal
diameters, offset 45° from the point where the vibration was
induced. The anti-nodes are located along two orthogonal (90°
offset) diameters in the disc, with one diameter intersecting the
point where the vibration was induced. See Fig. A1.1, which
shows a finite element map of anti-flexural displacement in a
disc and a schematic of the nodal and antinodal lines for the
first natural vibration of the disc).

TABLE 2 Within- and Between-Laboratory Precision

Test Bar No. and Type Al2O3 Si3N4

Measured fund, flexural frequency (Hz) 6581 11 598
95 % repeatability limit (within laboratory) CV, %r

A 0.9 % 1.1 %
95 % reproducibility limit (between laboratories) CV, %R

A 1.2 % 1.3 %
ACalculated in accordance with Practice E 177, Section 28.
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A1.2.1.3 nodes, n—one or more locations that have a
constant zero displacement in an unconstrained resonant speci-
men.

A1.2.1.4 second natural vibration, n—the vibrations that
occur when the displacements in the cross-sectional plane (the
plane that is parallel to the flat of the disc) are normal to the
plane and are uniform in displacement for a given radial
distance from the center point through the entire 360° arc. This
is axisymmetric flexural vibration(7). For the second natural
vibration mode of a disc, the nodes are located in a circle
concentric with the center of the disc with a fractional radius of
0.681 of the disc radius. The anti-nodes are located at the
center and around the circumference of the disc specimen. See
Fig. A1.2, which shows a finite element map of axisymmetric
flexural displacement in a disc and a schematic of the nodal
circle and the antinodal points and line for the second natural
vibration of the disc).

A1.3 Test Specimen

A1.3.1 Fabricate the specimens so that they are disc-shaped
with a diameter-to-thickness ratio of at least four, with a value
of 10-20 recommended for experimental simplicity. Resonant
frequencies for a given specimen are a function of the
specimen dimensions as well as its mass and moduli; therefore,
dimensions should be selected with this relationship in mind.
By using approximate specimen dimensions and estimated
values for the moduli and Poisson’s ratio, nominal resonant
frequencies can be calculated with the formulas in Section A5.
By adjusting the size of the specimen, the resonant frequencies
can be tuned into the measurement range of the transducers and
electronics. The dimensional tolerances for the thickness,
diameter, and flatness are given in A1.3.2-A1.3.5.

A1.3.2 Measure the specimen thickness within 0.1 % at five
locations (one at the center, two at the outer edge, and two at
the1⁄2 radius). Determine the average of the five measurements
for a specimen thickness.

A1.3.3 Ensure that the thickness of the disc is uniform so
that opposite plane surfaces of the disc are parallel to within
0.1 % of the thickness, whichever is greater. For larger discs
where precision machining of the thickness to those tolerances
is difficult, an alternative tolerance of 0.01 mm or6 0.5 % is
allowed, with proper allowances for the resulting loss of
precision in the calculated modulus. The use of the less precise
tolerance for the thickness should be noted in the report.

A1.3.4 Measure the specimen diameter within 0.1 % at four
locations (45° intervals around the circumference, as shown in
Fig. A1.3.) Determine an average from the four measurements.
Ensure that the diameter of the disc is uniform to within6
0.1 %, whichever is greater. (The value of the radius is used to
determine the Poisson’s ratio.)

A1.3.5 Measure the flatness of the disc resting on a surface
plate with a dial gage, taking measurements at nine locations
(one at the center, four at the outer edge, and four at the1⁄2
radius) on the disc. Turn the disc over and repeat the measure-
ment on the opposite face. The maximum difference between
any two measurements on a face must not exceed 0.1 % of the
diameter.

A1.3.6 Determine the specimen mass to the nearest 10 mg
or 0.1 % of the total weight, whichever is greater.

A1.3.7 All other specimen requirements and recommenda-
tions as described in Section 8 of the main body of this
standard are pertinent to the disc-shaped specimens.

FIG. A1.1 Displacement Diagram for Disc-Shaped Specimen in First Natural Vibration

FIG. A1.2 Displacement Diagram for Disc-Shaped Specimen in Second Natural Vibration Mode
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A1.4 Procedure

A1.4.1 Active and allow all electrical equipment to stabilize
according to manufacturer’s recommendations.

A1.4.2 Use a test specimen established as an “in-house”
verification standard to check the operation of the test system.
The “in-house” standard can also be used to verify the
operation, repeatability, and precision of the system and the
operator. The standard specimen should have a geometry
similar in size and shape to the experimental specimens.

A1.4.3 First Natural Resonant Frequency
A1.4.3.1 Specimens can be supported either on soft poly-

urethane foam strips or on four hard support points. Specimens
with a low (<10) diameter-to-thickness ratio may be supported
on flat strips of soft polyurethane foam set in an x-pattern.
Experience has shown that foam supports are more compliant
than hard supports and markedly reduce rattling and extraneous
vibrations in the test. If foam supports are not available, place
the specimen on four hard support points located at the
intersections of the nodal diameters of the first natural vibration
with the nodal circle of the second natural vibration (see Fig.
A1.4). Generally, visual positioning is sufficiently accurate for
larger specimens (diameter >75 mm). Specimens with a high
(>20) diameter-to-thickness ratio or a smaller diameter (<75
mm) will require more accurate positioning.

NOTE A1.1—For precise support location, the nodal circle diameter of
the test specimen can be calculated as 0.681 of the geometrical mean
diameter. Then draw, or otherwise define, the nodal circle of this diameter
on a piece of paper so that it is concentric with a circle drawn slightly
larger than the diameter of the test piece specimen. Locate four equally
disposed positions around the nodal circle to define the support points (see
Fig. A1.4). Place the supports at these positions and then place the test
specimen on the supports so that the specimen is visually concentric with
the second larger drawn circle.

A1.4.3.2 Follow section 9.3.2 in the main body for orienting
and using contact and non-contact transducers. Determine the
direction of maximum sensitivity for the transducer. Orient the
transducer so that it will detect the desired vibration.

A1.4.3.3 For the first natural vibration Fig. A1.5 shows the
impulse and sensor points. Locate the transducer on a point (S1
in Fig. A1.5) on the second mode nodal circle on the flat of the
disc and offset by 45° from a support point. Strike the specimen
on the flat of the disc (X1 in Fig. A1.5) 90° away from the
transducer point. Striking at the second mode nodal circle will
minimize the possibility of exciting that particular mode of
vibration.

NOTE A1.2—Accuracy and repeatability in the impulse excitation test
depend upon developing and detecting a single vibration mode in the test
specimen, without introducing and detecting alternative vibration modes
in the specimen. Exciting and detecting a singular vibration mode for a
simple geometry of suitable size depends on three experimental variables:

• the alignment of the support points with the specimen nodal points to
favor the desired vibration mode and to minimize interference

• the location of the strike point at the antinode of the desired vibration
mode and an elastic (rapid with short duration contact) method of striking

• the positioning of the detection transducer at a point where the desired
vibration mode is active, but where there is minimal interference from
competitive vibrations

With a minimal amount of experience and practice on a suitable
specimen geometry, most operators can obtain repeatability and accuracy
on the order of 1 % or better in a series of repeated test strikes. For a
specific specimen, the first test strikes are a means of determining the
appropriate locations and methods of specimen support, striking, and
signal detection. By slight shifts in those positions and repeated test
strikes, the proficient operator can find the appropriate locations to achieve
the consistent 1 % repeatability in a series of five consecutive readings.
This is an iterative process for every new specimen; but can be done
quickly by those operators who have experience with specimens of
different sizes and compositions.

A1.4.3.4 After repeatability of the test procedure has been
demonstrated, take and record at least five (5) readings. Use the
average of these five readings to determine the first natural
frequency (f1). If readings repeat with a variation greater than
1 %, the operator shall review the measurement technique
(supports, tap/sensor location, tapping mode) and the integrity/
geometry of the test specimen.

NOTE A1.3—Adjustments and improved consistency in technique may
improve the repeatability. Measurement technique can also be checked for
consistency by taking measurements on “in-house” calibration standards.
If technique adjustments do not improve the repeatability for the experi-
mental specimens, the operator should determine what the source of the
variation is. There are two possible causes for this variation:

• a geometry in which two vibration modes exist with similar frequen-
cies that interfere during the measurement

• inhomogeneities/flaws in the test specimens which produce spurious
vibrations or very rapid damping

In the case of specimens with vibration modes that are similar in
frequency, the vibration of interest can be enhanced and the undesirable

FIG. A1.3 Diameter Measurement Locations

FIG. A1.4 Support Points for 1 st and 2d Natural Vibrations in Discs
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vibration can be diminished, based on iterative changes in technique
(support/tap/sensor location, tapping mode).

For example, samples of rolled sheet may exhibit poor repeatability.
Gradually rotating the sample will result in a sample position with good
repeatability for the first mode. Rotating the sample another 45° will result
in another position with good repeatability for the first mode.

A1.4.4 Second Natural Resonant Frequency
A1.4.4.1 The specimen is supported at the same points used

for the first natural frequency support—the intersection of the
first natural frequency nodal diameters with the second natural
frequency nodal circle (Fig. A1.4).

A1.4.4.2 Position the transducer on the flat of the disc close
to the outer circumference (S2 in Fig. A1.5). Then strike the
disc specimen lightly at the center of the specimen (X2 in Fig.
A1.5).

A1.4.4.3 After repeatability of the test procedure has been
demonstrated, the operator takes at least five (5) readings. Use
the average of these five readings to determine the second
natural frequency (f2). If the readings vary by more than 1 % of
each other, the operator shall review the measurement tech-
nique. [See Notes 2 and 3 following sections A1.4.3.3 and
A1.4.3.4]

A1.5 Calculations

A1.5.1 The derivation and use of the equations for calcu-
lating the Poisson’s ratio and moduli from disc-shaped speci-
mens are described in detail in two Refs(8, 9). The Martincek
reference(8) gives the derivation and procedures for the
baseline calculation. The fundamental equation defining the
relationship between the natural resonant frequency, the mate-
rial properties, and the specimen dimensions is given by
Martincek as:

fi 5
Ki

2pr2ŒA

rt
(A1.1)

where fi is the resonant frequency of interest,Ki is the
geometric factor for that resonant frequency,r is the radius of
the disc,A is the plate constant (A = Et3/[12 (1-µ2)], t is the disc
thickness,r is the density of the disc,E is Young’s modulus of
elasticity, and µ is the Poisson’s ratio for the disc material. This
is a general equation which is valid for both the first natural and
second natural vibrations. The Glandus reference supplements
the Martincek article with more extensive tables for the

geometric factorsKi and for determining Poisson’s ratio. The
overall method for calculating the Poisson’s ratio, Young’s
modulus, and the shear modulus from the first natural and
second natural frequencies is described by Martincek and by
Glandus as the following three-step procedure.

(1) Determine the Poisson’s ratio from the experimental
values for the first and second natural resonant frequencies.

(2) Calculate two independent values forE (Young’s
modulus of elasticity) using the Poisson’s ratio from step 1 and
the first natural and second natural resonant frequencies.
DetermineE as the average of the two independent calcula-
tions.

(3) Calculate the value ofG (Shear Modulus) using the
Poisson’s ratio from step 1 and the calculated value ofE from
step 2.

The details for each calculation are given in the following
sections.

A1.5.2 Poisson’s Ratio(8,9)

For the disc-shaped specimen, Poisson’s ratio (µ) can be
determined directly from the experimental values of the first
natural resonant frequency (f1) and the second natural resonant
frequency (f2). This is done by the use of Table A1.1, in which
the value for Poisson’s ratio (µ) is interpolated from the table
using the ratio of the second natural resonant frequency to the
first natural resonant frequency (f2/f1) correlated with the ratio
of the specimen thickness to the specimen radius (t/r).
For example, if the ratio (f2/f1) of the two experimental
resonant frequencies is 1.55 and the thickness of the disc is 3
mm and the diameter is 30 mm (giving a t/r ratio of 0.20), then
the Poisson’s ratio is 0.218 from the 9th column and 5th row of
the table.

A1.5.3 Dynamic Young’s Modulus(8,9)
A1.5.3.1 For the Young’s modulus of a disc, two calcula-

tions of E (E1 and E2) are made independently from the two
resonant frequency measurements, and then a final valueE is
determined by averaging the two calculated valuesE1 andE2.

E1 5 @37.6991f1
2 D2 m ~1 2 µ2!#/ ~K1

2 t3! (A1.2)

E2 5 @37.6991f2
2 D2 m ~1 2 µ2!#/ ~K2

2 t3! (A1.3)

FIG. A1.5 Impulse and Sensor Points for 1 ST and 2d Natural Vibration in Discs
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E 5 ~E1 1 E2!/2 (A1.4)

where:
E = Young’s modulus (Pa)
E1 = first natural calculation of Young’s modulus
E2 = second natural calculation of Young’s modulus
f1 = first natural resonant frequency (Hz) of the disc
f2 = second natural resonant frequency (Hz) of the disc
D = diameter (mm) of the disc
m = mass (g) of the disc
µ = Poisson’s ratio for the specimen as determined in

Section A1.5.2
K1 = first natural geometric factor from Table A1.2A &

Table A1.2B (using linear interpolation as necessary)
K2 = second natural geometric factor from Table A1.3A

and Table A1.3B (using linear interpolation as neces-
sary)

t = thickness (mm) of the disc
r = radius (mm) of the disc

NOTE A1.4—The two tables in sets A-II and A-III give two different
ranges for the independent variablest/r and µ. The first table (A) gives the
full range (t/r = 0.0 to 0.50 and µ = 0 to0.50), while the second table (B)
in each set gives a smaller range with smaller increments (t/r = 0.1 to 0.2
and µ = 0.14 to 0.34). The determination of a value forKi from the tables
is done in a similar manner to the method used for Poisson’s ratio in Table
A1.1.

NOTE A1.5—The constant 37.6991 in the equation is from the Glandus
reference and is the numerical value of 12p.

A1.5.4 Dynamic Shear Modulus(9)
A1.5.4.1 The shear modulus is determined from the calcu-

lated Young’s modulus value and the Poisson ratio.

G 5 E/@2 ~1 1 µ!# (A1.5)

where:
G = shear modulus (Pa)
E = Young’s modulus (Pa) calculated in section A1.5.3
µ = Poisson’s ratio determined in section A1.5.2

TABLE A1.1 Poisson’s Ratio (µ) Values (as a function of f 2/f1 and t/r) [9]

f2/f1 1.350 1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600

t/r Ratio POISSON’S RATIO (µ)
0.00 0.015 0.043 0.070 0.094 0.118 0.141 0.163 0.184 0.205 0.226 0.247
0.05 0.018 0.044 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.226 0.247
0.10 0.020 0.045 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.227 0.247
0.15 0.023 0.049 0.075 0.100 0.124 0.148 0.171 0.192 0.212 0.233 0.254
0.20 0.025 0.053 0.080 0.105 0.130 0.154 0.178 0.198 0.218 0.239 0.260
0.25 0.033 0.060 0.088 0.114 0.139 0.162 0.186 0.206 0.227 0.247 0.268
0.30 0.040 0.068 0.096 0.122 0.148 0.171 0.193 0.214 0.235 0.255 0.275
0.35 0.051 0.078 0.105 0.130 0.155 0.179 0.203 0.224 0.245 0.264 0.284
0.40 0.062 0.088 0.113 0.138 0.162 0.187 0.212 0.234 0.255 0.274 0.292
0.45 0.070 0.096 0.123 0.148 0.173 0.197 0.221 0.242 0.263 0.281 0.300
0.50 0.078 0.105 0.132 0.158 0.183 0.206 0.229 0.250 0.270 0.289 0.307

f2/f1 1.625 1.650 1.675 1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900

t/r Ratio POISSON’S RATIO (µ)
0.00 0.265 0.282 0.297 0.312 0.329 0.346 0.362 0.378 0.394 0.409 0.424 0.438
0.05 0.265 0.283 0.298 0.314 0.331 0.347 0.363 0.378 0.394 0.409 0.424 0.438
0.10 0.265 0.283 0.300 0.316 0.332 0.348 0.363 0.378 0.394 0.409 0.424 0.438
0.15 0.271 0.289 0.306 0.322 0.338 0.354 0.368 0.383 0.398 0.413 0.427 0.442
0.20 0.278 0.295 0.312 0.328 0.344 0.359 0.374 0.388 0.403 0.417 0.431 0.445
0.25 0.286 0.304 0.320 0.336 0.351 0.366 0.380 0.395 0.409 0.423 0.437 0.451
0.30 0.294 0.312 0.328 0.344 0.358 0.372 0.387 0.402 0.415 0.428 0.442 0.456
0.35 0.302 0.320 0.336 0.352 0.367 0.382 0398 0.414 0.428 0.442 0.456 0.471
0.40 0.310 0.328 0.344 0.360 0.376 0.392 0.409 0.425 0.440 0.455 0.470 0.485
0.45 0.318 0.337 0.354 0.370 0.387 0.403 0.420 0.437 0.452 0.468 0.485 0.503
0.50 0.327 0.346 0.363 0.380 0.397 0.414 0.431 0.448 0.464 0.480 0.500 0.520
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TABLE A1.2 a K 1 Values (as a function of t/r and µ) [9]

t/r 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

µ K1 Value
0.000 6.170 6.144 6.090 6.012 5.914 5.800 5.674 5.540 5.399 5.255 5.110
0.050 6.076 6.026 5.968 5.899 5.816 5.717 5.603 5.473 5.331 5.178 5.019
0.100 5.962 5.905 5.847 5.782 5.705 5.613 5.504 5.377 5.234 5.079 4.915
0.150 5.830 5.776 5.720 5.657 5.581 5.490 5.382 5.256 5.115 4.962 4.800
0.200 5.681 5.639 5.587 5.524 5.446 5.351 5.240 5.114 4.975 4.826 4.673
0.250 5.517 5.491 5.445 5.380 5.297 5.197 5.083 4.957 4.822 4.681 4.537
0.300 5.340 5.331 5.290 5.223 5.135 5.030 4.913 4.787 4.656 4.523 4.390
0.350 5.192 5.156 5.120 5.052 4.961 4.853 4.734 4.610 4.483 4.358 4.234
0.400 4.973 4.964 4.931 4.865 4.775 4.668 4.551 4.429 4.306 4.186 4.070
0.450 4.781 4.756 4.723 4.661 4.576 4.476 4.365 4.249 4.131 4.013 3.899
0.500 4.540 4.525 4.490 4.436 4.365 4.280 4.182 4.075 3.960 3.841 3.720

TABLE A1.2 b K 1 Values (as a function of t/r and µ) (9)

t/r 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200

µ K1 Value
0.14 5.746 5.739 5.722 5.710 5.696 5.683 5.670 5.654 5.642 5.629 5.608
0.16 5.694 5.687 5.670 5.664 5.645 5.632 5.619 5.602 5.590 5.576 5.556
0.18 5.641 5.634 5.617 5.606 5.592 5.579 5.566 5.549 5.537 5.523 5.502
0.2 5.587 5.576 5.563 5.551 5.538 5.524 5.510 5.495 5.479 5.463 5.446
0.22 5.531 5.524 5.507 5.495 5.481 5.468 5.455 5.439 5.427 5.411 5.388
0.24 5.474 5.467 5.450 5.438 5.424 5.410 5.396 5.379 5.366 5.351 5.328
0.26 5.415 5.408 5.391 5.379 5.364 5.350 5.336 5.318 5.304 5.289 5.266
0.28 5.354 5.347 5.330 5.317 5.301 5.287 5.273 5.255 5.241 5.225 5.201
0.30 5.290 5.279 5.266 5.253 5.238 5.223 5.207 5.190 5.173 5.154 5.135
0.32 5.224 5.217 5.200 5.187 5.172 5.157 5.142 5.123 5.108 5.091 5.067
0.34 5.156 5.148 5.131 5.118 5.103 5.088 5.073 5.053 5.037 5.020 4.997

TABLE A1.3 a K 2 Values (as a function of t/r and µ) [9]

t/r 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500

µ K2 Value
0.000 8.240 8.226 8.151 8.027 7.863 7.670 7.455 7.227 6.991 6.754 6.520
0.050 8.378 8.339 8.252 8.124 7.963 7.777 7.570 7.350 7.120 6.885 6.649
0.100 8.511 8.459 8.364 8.233 8.071 7.885 7.679 7.459 7.228 6.991 6.751
0.150 8.640 8.584 8.485 8.349 8.182 7.990 7.779 7.553 7.316 7.074 6.830
0.200 8.764 8.712 8.611 8.469 8.294 8.092 7.871 7.635 7.390 7.141 6.889
0.250 8.884 8.840 8.738 8.589 8.403 8.189 7.954 7.706 7.450 7.191 6.931
0.300 9.000 8.962 8.860 8.705 8.508 8.280 8.030 7.767 7.497 7.226 6.960
0.350 9.111 9.081 8.977 8.814 8.605 8.363 8.098 7.819 7.535 7.253 6.979
0.400 9.219 9.193 9.085 8.913 8.692 8.436 8.157 7.865 7.569 7.276 6.991
0.450 9.321 9.292 9.178 8.997 8.766 8.499 8.208 7.905 7.598 7.295 7.001
0.500 9.420 9.376 9.252 9.063 8.824 8.550 8.252 7.940 7.625 7.313 7.010

TABLE A1.3 b K 2 Values (as a function of t/r and µ) [9]

t/r 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200

µ K2 Value
0.14 8.460 8.443 8.411 8.385 8.355 8.326 8.297 8.262 8.234 8.202 8.160
0.16 8.510 8.493 8.460 8.433 8.403 8.373 8.343 8.308 8.279 8.248 8.205
0.18 8.560 8.542 8.509 8.482 8.451 8.421 8.391 8.356 8.327 8.294 8.249
0.2 8.611 8.586 8.559 8.530 8.500 8.469 8.437 8.403 8.368 8.331 8.294
0.22 8.662 8.646 8.613 8.582 8.548 8.517 8.487 8.454 8.425 8.390 8.338
0.24 8.712 8.694 8.660 8.630 8.597 8.565 8.534 8.498 8.467 8.432 8.382
0.26 8.762 8.743 8.708 8.678 8.645 8.612 8.580 8.542 8.510 8.474 8.425
0.28 8.811 8.791 8.755 8.726 8.692 8.659 8.625 8.585 8.551 8.515 8.467
0.3 8.860 8.833 8.804 8.772 8.739 8.705 8.668 8.630 8.591 8.550 8.508
0.32 8.907 8.885 8.848 8.818 8.784 8.750 8.716 8.675 8.640 8.601 8.548
0.34 8.954 8.932 8.894 8.863 8.827 8.793 8.758 8.717 8.681 8.641 8.586
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